NASA ATLAS

NASA Asteroid Tracking System Now Capable of Full Sky Search every 24 hours.

The NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS)—a state-of-the-art asteroid detection system operated by the University of Hawaiʻi (UH) Institute for Astronomy (IfA) for the agency’s Planetary Defense Coordination Office (PDCO)—has reached a new milestone by becoming the first survey capable of searching the entire dark sky every 24 hours for near-Earth objects (NEOs) that could pose a future impact hazard to Earth. Now comprised of four telescopes, ATLAS has expanded its reach to the southern hemisphere from the two existing northern-hemisphere telescopes on Haleakalā and Maunaloa in Hawai’i to include two additional observatories in South Africa and Chile. 

“An important part of planetary defense is finding asteroids before they find us, so if necessary, we can get them before they get us” said Kelly Fast, Near-Earth Object Observations Program Manager for NASA’s Planetary Defense Coordination Office. “With the addition of these two telescopes, ATLAS is now capable of searching the entire dark sky every 24 hours, making it an important asset for NASA’s continuous effort to find, track, and monitor NEOs.” 

Subscribe to Newsletter !!

Sign up for Newsletter to receive awesome content in your inbox, every week.

We don’t spam! Read our privacy policy for more info.

UH IfA developed the first two ATLAS telescopes in Hawaiʻi under a 2013 grant from NASA’s Near-Earth Objects Observations Program, now part of NASA’s PDCO, and the two facilities on Haleakalā and Maunaloa, respectively, became fully operational in 2017. After several years of successful operation in Hawaiʻi, IfA competed for additional NASA funds to build two more telescopes in the southern hemisphere. IfA sought partners to host these telescopes, and selected the South African Astronomical Observatory (SAAO) in South Africa and a multi-institutional collaboration in Chile. The ATLAS presence augments already substantial astronomical capability in both countries. 

Sutherland ATLAS
From left to right: Sutherland ATLAS station during construction in South Africa. Credit: Willie Koorts (SAAO); Chilean engineers and astronomers installing the ATLAS telescope at El Sauce Observatory. Credit: University of Hawaii; Illustration of NASA’s DART spacecraft and the Italian Space Agency’s (ASI) LICIACube prior to impact at the Didymos binary system. Credits: NASA/Johns Hopkins, APL/Steve Gribben; Illustration of the NEO Surveyor spacecraft.

In a single exposure, each of the four ATLAS telescopes can photograph a swath of sky 100 times larger than the full moon. The construction of the two last telescopes, which are located at Sutherland Observation Station in South Africa and El Sauce Observatory in Chile, allows ATLAS to monitor the night sky in Hawai’i during the day.

To date, the ATLAS system has discovered more than 700 near-Earth asteroids and 66 comets, along with the detection of 2019 MO and 2018 LA, two very small asteroids that actually impacted Earth. The system is specially designed to detect objects that approach very close to Earth – closer than the distance to the Moon, about 240,000 miles or 384,000 kilometers away. On January 22, ATLAS-Sutherland in South Africa discovered its first NEO, 2022 BK, a 100-meter asteroid that poses no threat to Earth. 

The addition of the new observatories to the ATLAS system comes at a time when the agency’s Planetary Defense efforts are on the rise. NASA’s Double Asteroid Redirection Test (DART)—the world’s first full-scale mission to test technology for defending Earth against potential asteroid impacts—launched November 24, 2021, on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. DART will deflect a known asteroid, which is not a threat to Earth, to slightly change the asteroid’s motion in a way that can be accurately measured using ground-based telescopes. 

NASA ATLAS
NASA ATLAS

Work on the agency’s Near-Earth Object Surveyor satellite telescope (NEO Surveyor) is also ongoing after getting approval to proceed to Preliminary Design, also known as Key Decision Point- B. The infrared space telescope, once completed, will speed up the agency’s ability to find and characterize the majority of potentially hazardous NEOs, particularly those that may approach Earth during the day.

“We have not yet found any significant asteroid impact threat to Earth, but we continue to search for that sizable population we know is still to be found. Our goal is to find any possible impact years to decades in advance so it can be deflected with a capability using technology we already have, like DART,” said Lindley Johnson, planetary defense officer at NASA Headquarters. “DART, NEO Surveyor, and ATLAS are all important components of NASA’s work to prepare Earth should we ever be faced with an asteroid impact threat.” 

The University of Hawai’i ATLAS is funded through a grant from the Near-Earth Object Observations Program administered by NASA’s PDCO. The Johns Hopkins Applied Physics Lab manages the DART mission for NASA’s PDCO as a project of the agency’s Planetary Missions Program Office (PMPO). NEO Surveyor is being developed by NASA’s Jet Propulsion Laboratory in Southern California and the University of Arizona and managed by NASA’s PMPO with program oversight by the PDCO. NASA established the PDCO in 2016 to manage the agency‘s ongoing efforts in Planetary Defense.

For more information, visit:

https://www.nasa.gov/planetarydefense

Subscribe to Newsletter !!

Sign up for Newsletter to receive awesome content in your inbox, every week.

We don’t spam! Read our privacy policy for more info.

heshmore logo

Sign up to Newsletter receive Top Technology Stories in your inbox, every week.

We don’t spam! Read our privacy policy for more info.